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Abstract Parametric uncertainty in convection parameterization is one major source of model errors
that cause model climate drift. Convection parameter tuning has been widely studied in atmospheric mod-
els to help mitigate the problem. However, in a fully coupled general circulation model (CGCM), convection
parameters which impact the ocean as well as the climate simulation may have different optimal values.
This study explores the possibility of estimating convection parameters with an ensemble coupled data
assimilation method in a CGCM. Impacts of the convection parameter estimation on climate analysis and
forecast are analyzed. In a twin experiment framework, five convection parameters in the GFDL coupled
model CM2.1 are estimated individually and simultaneously under both perfect and imperfect model
regimes. Results show that the ensemble data assimilation method can help reduce the bias in convection
parameters. With estimated convection parameters, the analyses and forecasts for both the atmosphere
and the ocean are generally improved. It is also found that information in low latitudes is relatively more
important for estimating convection parameters. This study further suggests that when important parame-
ters in appropriate physical parameterizations are identified, incorporating their estimation into traditional
ensemble data assimilation procedure could improve the final analysis and climate prediction.

1. Introduction

In a fully coupled general circulation model (CGCM), convection parameterization is of critical importance.
Previous studies suggest that misfit in convection parameterization is one major source of biases for model
climatology and variability (Bretherton, 2007; Jang et al., 2013; Kim et al., 2011). Therefore, a good convec-
tion scheme is crucial to a CGCM (Mukhopadhyay et al., 2010; Randall et al., 1996). Many closure parameters
exist in the convection parameterization scheme in a CGCM (Arakawa & Schubert, 1974; Moorthi & Suarez,
1992; Smagorinsky, 1963). Because of limited constraints from direct observations and theories, convection
parameter values usually contain large uncertainty (Sexton et al., 2012; Williamson et al., 2015, 2017). This
uncertainty is associated with pronounced model biases in the CGCM. For example, tropical variabilities,
such as El Ni~no-Southern Oscillation (ENSO), Madden-Julian Oscillation (MJO), etc., are not simulated well
(Bretherton, 2007) where convection parameters play a key role (Jang et al., 2013; Kim et al., 2011; Tokioka
et al., 1988). Due to the fact that convection parameter values have such a great impact on global climate,
in the CGCM, they are often used as tuning parameters to adjust model states toward the observation
(Golaz et al., 2013; Mauritsen et al., 2012).

Traditionally, convection parameters are tuned manually to maintain desired climate properties (Mauritsen
et al., 2012). Recent advances in mathematics and computer sciences make it possible to tune convection
parameters automatically based on mathematical and statistical frameworks. Various automatic methods
have been used for parameter estimation, including the downhill simplex method (Severijns & Hazeleger,

Key Points:
� The ensemble data assimilation

method can potentially be used to
tune convection parameters in a fully
coupled general circulation model
� The climate analysis and prediction

are significantly improved by
convection parameter estimation
� Parameters with greater sensitivities

are more suitable for tuning in the
CGCM

Supporting Information:
� Supporting Information S1
� Figure S1
� Figure S2
� Figure S3

Correspondence to:
S. Li,
lucy_lishan@qq.com;
S. Zhang,
szhang@ouc.edu.cn

Citation:
Li, S., Zhang, S., Liu, Z., Lu, L., Zhu, J.,
Zhang, X., et al. (2018). Estimating
convection parameters in the GFDL
CM2.1 model using ensemble data
assimilation. Journal of Advances in
Modeling Earth Systems, 10, 989–1010.
https://doi.org/10.1002/2017MS001222

Received 3 NOV 2017

Accepted 20 MAR 2018

Accepted article online 25 MAR 2018

Published online 13 APR 2018

VC 2018. The Authors.

This is an open access article under the

terms of the Creative Commons

Attribution-NonCommercial-NoDerivs

License, which permits use and

distribution in any medium, provided

the original work is properly cited, the

use is non-commercial and no

modifications or adaptations are

made.

LI ET AL. 989

Journal of Advances in Modeling Earth Systems

http://dx.doi.org/10.1002/2017MS001222
http://orcid.org/0000-0003-3466-7527
http://orcid.org/0000-0001-6569-9842
http://orcid.org/0000-0003-4554-2666
http://orcid.org/0000-0003-4996-7821
http://orcid.org/0000-0002-3332-7849
http://orcid.org/0000-0001-6413-4479
https://doi.org/10.1002/2017MS001222
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1002/2017MS001222
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1942-2466/
http://publications.agu.org/
http://crossmark.crossref.org/dialog/?doi=10.1002%2F2017MS001222&domain=pdf&date_stamp=2018-04-13


2005; Zhang et al., 2015), annealing method (Jackson et al., 2004, 2008; Liang et al., 2013; Yang et al., 2013;
Zou et al., 2014), multiple objective method (Neelin et al., 2010), history matching (Williamson et al., 2015,
2017), Bayesian calibration (Hararuk et al., 2014; Kennedy & O’Hagan, 2001; Rougier, 2007; Sexton et al.,
2012), ensemble data assimilation (Schirber et al., 2013), variational method (Emanuel & �Zivković-Rothman,
1999), and sequential Monte Carlo method (J€arvinen et al., 2010). Here an ensemble data assimilation
method is used to estimate convection parameters.

Previous studies on estimating convection parameters with the ensemble data assimilation method are
mostly conducted in the column-based models and atmospheric general circulation models (AGCMs). These
studies showed that the method can help reduce model errors associated with convection parameterization
scheme to improve model performance. For example, Golaz et al. (2007) calibrated cloud parameters with
the ensemble data assimilation method in a single-column model to improve the model simulation. Ruiz
et al. (2013) tuned three convection parameters in a low-resolution AGCM in a twin experiment setting. Nev-
ertheless, due to the computational cost, the ensemble data assimilation method is rarely used in the
CGCM. However, given the strong impact of convection on both the atmosphere and the ocean, it is real-
ized that the interactions among convection, other processes and the large-scale circulations, and the cou-
pling between the atmosphere and the ocean are becoming increasingly important in climate simulations
(Hourdin et al., 2016; Li et al., 2016). For example, Schirber et al. (2013) estimated four convection parame-
ters in an AGCM in a 1 month time window, finding that the estimated parameter values could help
improve short-term forecast. However, in their experiment, the long-term climate simulation error tends to
increase, probably because of the neglect of long-term signals of the ocean in both the estimation and the
model. Therefore, to understand the impact of convection parameters on the long-term climate modeling,
it is necessary to estimate convection parameters in the CGCM systematically. Our study is a first attempt to
explore the feasibility of estimating convection parameters in a CGCM with the ensemble coupled data
assimilation method.

Different from the previous work of estimating coupling parameters in a CGCM (Liu et al., 2014a, 2014b), esti-
mating convection parameters is more challenging. First, convection is discontinuous in both time and space,
making parameter estimation more dependent on time-variant information of local states, since only when
convection occurs can model states be influenced by convection parameters. Such a time-dependent feature
suggests that flow-dependent techniques that consider both instantaneous and longer-term parameter influ-
ences may be more suitable for estimating convection parameters. Second, there are many threshold parame-
ters in a convection parameterization scheme. The relationships between convection parameters and model
states could be highly nonlinear and non-Gaussian (Posselt & Bishop, 2012; Posselt et al., 2014; Posselt & Vuki-
cevic, 2010; Van Lier-Walqui et al., 2012, 2014), adding additional difficulties to parameter estimation. Third,
due to the relatively small-scale and high frequency nature of convection, the resolution of the observation
should be sufficiently high, in both time and space, to capture sufficient convective events.

This study explores the feasibility of estimating convection parameters in a fully coupled GCM with an
ensemble-based coupled data assimilation method and examines its impact on climate analysis and simula-
tion in a twin experiment context. After the introduction, a brief description of the model and its convection
parameterization, as well as the twin experiment setting is presented in section 2. Results of parameter sen-
sitivity, single, and multiple convection parameter estimation experiments under perfect and imperfect
model regimes are presented in section 3. Conclusions and discussions are given in section 4.

2. Model and Methodology

2.1. The CGCM and Its Convection Parameterization Scheme
The CGCM used here is the second generation of the coupled model (CM2) developed at the Geophysical
Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration (GFDL/NOAA) (Delworth
et al., 2006). This global climate model simulates the atmospheric and oceanic variabilities from diurnal to
multicentury time scales. The version of CM2 used here applies a finite-volume atmospheric dynamical core
(so-called CM2.1). The atmosphere and land components are AM2.1 (Lin, 2004) and LM2.1 (Delworth et al.,
2006; GFDL Global Atmospheric Model Development Team, 2004) with the resolution of 28 latitude 3 2.58

longitude, and 24 vertical levels. The oceanic component is OM3.1 with the resolution of 18 latitude 3 18

longitude, and 50 vertical levels (Gnanadesikan et al., 2006; Griffies et al., 2005). The meridional resolution
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within 308N/S becomes progressively higher. The sea ice component
is the Sea-Ice Simulator (SIS; Delworth et al., 2006; Winton, 2000). The
coupler is the Flexible Modeling System (FMS; http://www.gfdl.noaa.
gov/~fms/), where fluxes between each component are exchanged
every 2 model hours.

CM2.1 generates long time climatology of atmospheric fields and oce-
anic surface very close to observations. For the atmospheric fields, the
spatial distributions and time evolutions of the shortwave radiation
absorption, precipitation, surface temperature, sea level pressure,
wind, geopotential height, and temperature profile are consistent
with observations (Delworth et al., 2006). For the oceanic fields, the
simulations of meridional heat transport, sea surface characteristics,
sea ice distributions, and vertical oceanic structures are also stable
and credible compared to observations (Delworth et al., 2006; Gnana-
desikan et al., 2006). CM2.1 is capable of simulating typical variabilities
from interannual to decadal time scales (Delworth et al., 2006; Witten-
berg et al., 2006). The climate response of CM2.1 is 3.4 K to a doubling
of CO2. The transient climate response is about 1.6 K to a 1% CO2

increase (Stouffer et al., 2006). Due to its ability in simulating impor-
tant climate features, CM2.1 is widely used in climate researches.
CM2.1 participated in the Coupled Model Intercomparison Project
Phase 5 (CMIP5) and displayed relatively smaller overall simulation
errors (e.g., Figure 9.7 in Flato et al., 2013; Nishii et al., 2012).

The convection scheme in CM2.1 is the Relaxed Arakawa-Schubert
cumulus convection parameterization (RAS; Moorthi & Suarez, 1992). RAS is one of the improved implemen-
tations of the original Arakawa-Schubert cumulus convection parameterization (AS; Arakawa & Schubert,
1974; Lord, 1982). Similar to AS, RAS assumes the balance between the generation of moist convective
instability by the large-scale environment and its dispersion by the cloud. It uses the mass flux to calculate
the interaction between the convection and the large-scale environment. RAS distinguishes multiple cloud
types by their detrainment properties. For each cloud type, as shown in the schematic diagram Figure 1,
the atmosphere is divided into two parts: the cloud region from the cloud base zc to the cloud top zT, and
the subcloud region beneath. The air from the mixed layer below zB and the air from the environment
above zc are entrained into the cumulus updraft which starts from zB, and is then detrained at zT. At zT, a
fraction of the condensed water becomes precipitation. The cumulus cloud work function is calculated
based on the profiles of the initial environment. The cloud work function is then relaxed toward the critical
value of the cloud work function where the atmosphere is stable. To form a closure, the cumulus mass flux
is calculated. A fraction of the mass flux is allowed to modify the temperature and moisture profiles. The
above procedures continue to be performed on another cloud type until all cloud types are finished. Com-
pared with the original AS scheme, RAS is more accurate and economical for the CGCM because it gener-
ates profiles that are more physically realistic while significantly reducing the computational cost of
calculating the quasi-equilibrium in the AS (Moorthi & Suarez, 1992).

2.2. Convection Parameters
In the CM2.1 RAS, five adjustable parameters controlling important physical processes are chosen for
parameter estimation experiments in our study (Table 1). The first parameter is the Tokioka parameter a. In
RAS, the Tokioka modification (Tokioka et al., 1988) is applied to suppress the convection whose entrain-
ment rate is smaller than the minimum threshold

lmin5
a
D

(1)

that varies with the planetary boundary layer depth D. The value of a, controlling the cumulus entrainment,
has great impacts on the high cloud, sea surface temperature (SST), and precipitation in the tropical region,
and further influences the tropical cyclone (Held & Zhao, 2008), MJO (Lee et al., 2008; Sobel et al., 2010),
Hadley Circulation (Kang et al., 2008), and ENSO (Jang et al., 2013; Kim et al., 2011). A greater a reduces

Figure 1. A schematic diagram of a single plume of one cloud type in CM2.1
RAS. zB is the base of the updraft. zc and zT are the cloud base and top, respec-
tively. The air from the mixed layer below zB and the environment above zc is
entrained into the updraft of the cumulus cloud and is detrained at the level of
cloud top, where part of the liquid water becomes precipitation and part is
evaporated. Some of the estimated parameters are marked with the red box at
corresponding processes.
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convection, high clouds, incoming sunlight and global temperature, while enhancing ENSO variability, and
eastward shifts of westerly wind stress and El Ni~no related precipitation anomalies (Jang et al., 2013; Kim
et al., 2011). The default value of a in CM2.1 is 0.025 which has been found to produce a good overall tropi-
cal simulation, although it leads to a cold bias in the upper tropical troposphere (GFDL Global Atmospheric
Model Development Team, 2004). The parameter a has great impact on the entrainment processes that are
believed to cause large uncertainties in climate prediction (Klocke et al., 2012; Murphy et al., 2004; Stainforth
et al., 2005). Parameters related with the entrainment processes have been used widely for tuning in param-
eter estimation studies (Li et al., 2016; Mauritsen et al., 2012; Schirber et al., 2013). Therefore, parameter a is
very suitable for tuning in CM2.1.

The second parameter is the relaxation parameter b. In RAS, only a fraction b of the total mass flux is used
to adjust the cloud, and is allowed to modify the large-scale environment in each step (Moorthi & Suarez,
1992). Given b, the adjustment time scale s over which the cloud relaxes the atmosphere to the neutral
state is defined as

s5
Dt
b
; (2)

where Dt is the time step. A greater b corresponds to stronger relaxation of the cloud work function toward
the quasi-equilibrium.

The third parameter is Ac, the ratio of the critical cloud work function to the standard cloud work function in
AS. In RAS, for each cloud type, the cloud work function is relaxed to a critical value which is the product of
Ac and the standard cloud work function defined in the original AS scheme (Lord, 1982; Moorthi & Suarez,
1992). A greater Ac leads to less stable atmosphere. Increasing Ac also leads to reduced convective precipita-
tion and increased large-scale precipitation (Sud et al., 1991).

The fourth and fifth parameters are precipitation efficiencies rd and rs. As stated in the last section, when all
the liquid water is risen to the detrainment level, part of it is precipitated. The fraction of water condensed
as precipitation is defined as the precipitation efficiency. In the CM2.1 RAS, the precipitation efficiency is cal-
culated as a function of the detrainment pressure p:

r5

rd p < 500 hPa

rs1
8002p

8002500
rd2rsð Þ: 500 hPa < p < 800 hPa

rs p > 800 hPa

:

8>>><
>>>:

(3)

rd and rs are the precipitation efficiencies specified for the deep convection which detrains above 500 hPa
and the shallow convection which detrains under 800 hPa. For the convection which detrains between 500
and 800 hPa, the precipitation efficiency r is linearly interpolated in pressure between rd and rs (GFDL Global
Atmospheric Model Development Team, 2004; Moorthi & Suarez, 1992). The (1 2 r) fraction of the con-
densed water is important condensate for the cloud. The value of the precipitation efficiency can influence
the reflectivity of the atmosphere, having a positive correlation with the incoming solar radiation which is
essential to the global climate. These five parameters are important to the modeled climate of CM2.1, and
are therefore used in the parameter estimation experiments.

Table 1
Results for Single Convection Parameter Estimation

Symbol Truth and range IB1 Perturbation PEG PET

rd 0.975 (0,1] 0.550 0.100 0.973 0.974
b 0.250 (0,1) 0.100 0.050 0.258 0.251
a 0.025 [0,0.04] 0.055 0.005 0.024 0.024
Ac 1.000 (0,2] 2.000 0.100 1.019 1.047
rs 0.500 (0,1) 0.150 0.100 0.489 0.503

Note. The ranges of parameters are derived from Moorthi and Suarez (1992), Tokioka et al. (1988), Kim et al. (2011),
Sud et al. (1991), and expert elicitation. IB1 is the first set of initial parameter biases. PEG and PET represent the results
of parameter estimations with global and tropical observations.
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2.3. Parameter Estimation Experimental Setup
As a preliminary exploration of estimating convection parameters in a sophisticated CGCM, following Liu
et al. (2014a, 2014b) and Ruiz et al. (2013), we carry out experiments in a twin experiment framework which
contains two model runs: the ‘‘truth’’ run and the ‘‘estimation’’ run. Within this framework, we estimate con-
vection parameters under both perfect and imperfect model regimes. In the twin experiment framework,
CM2.1 is first integrated with the default values (i.e., ‘‘truth’’ values, see Table 1) of all convection parameters.
This defines the ‘‘truth’’ run and the simulation is assumed to represent the evolution of the ‘‘truth’’ climate.
The ‘‘observations’’ are created from the ‘‘truth’’ simulation after the addition of a white noise error. Then
the ‘‘observations’’ are assimilated into the ‘‘estimation’’ run where value(s) of the convection parameter(s) is
(are) set with biased and perturbed values (see Table 1).

An idealized observation network is used in our experiment. The atmospheric ‘‘observations,’’ which include
6 h model grid temperature, specific humidity, and u/v wind, are assimilated to constrain model states. The
oceanic ‘‘observations’’ include the oceanic temperature and salinity profiles projected onto the 2004-Argo
network (Gould et al., 2004), and daily model grid SST. Only observations of the atmospheric temperature
and specific humidity are used to constrain convection parameters (not much improvement is found by
adding wind observations in constraining convection parameters in our experiment). The target of the esti-
mation is to minimize the error of 6 h atmospheric temperature and humidity during the estimation period.
The estimated parameter value is assumed to be able to provide better model simulation than that of the
unestimated parameter. The observation is created by adding onto the ‘‘truth’’ a Gaussian distributed ran-
dom error with a mean of zero and standard deviations of 0.5 K for the atmospheric temperature, 0.1 g/kg
for the specific humidity, 1 m/s for the u/v wind, 0.5 K for the oceanic temperature, and 0.1 psu for the oce-
anic salinity. Sensitivity experiments show that larger observational error degrades the estimation.

The ensemble adjustment Kalman filter (EAKF; Anderson, 2001, 2003; Zhang & Anderson, 2003) approach is
used for data assimilation and parameter estimation in our study. EAKF is a variant of the ensemble Kalman
Filter (EnKF; Evensen, 1994) under an adjustment idea. In the observational space, EAKF adjusts the ensem-
ble mean and ensemble departure separately with an algorithm similar to the Ensemble Square Root Filter
(Kalman SRF; Tippett et al., 2003) to obtain the observational increment (Anderson, 2001, 2003; Whitaker &
Hamill, 2002). Then the observational increment is projected onto the model space to produce the model
state increment:

Dxu
l;i5

cov Dxp
l ;Dya

k

� �
ra

k 2
Dyo

k;i : (4)

Here Dxu
l;i is the adjustment increment of the ith ensemble member of the lth updated model state. On the

RHS, Dyo
k;i is the observational increment of the ith ensemble member of the kth observable model state in

the observational space. xp
l is the ensemble of the lth model state prior to the update, and Dxp

l is the
ensemble of member departures from their ensemble mean. ya

k is the ensemble of the kth updated model
state in the observational space, and Dya

k is the ensemble of member departures from their ensemble
mean. cov Dxp

l ;Dya
k

� �
, often called the error covariance, is the covariance of Dxp

l and Dya
k . ra

k 2 is the variance
of the kth updated model state in the observational space. This equation of updating the model state
means that the adjustment increment of the model state Dxu

l;i is obtained by the increment of the observ-
able state Dyo

k;i multiplied by an operator
cov Dxp

l ;Dya
kð Þ

ra
k 2 (Anderson, 2001; Zhang & Anderson, 2003). More

details of the method can be found in Zhang et al. (2007).

The EAKF-based parameter estimation is an extension of the data assimilation by replacing the updated
state with the parameter. The parameter adjustment formula therefore becomes:

Duu
m;i5

cov Dup
m;Dya

k

� �
ra

k 2
Dyo

k;i (5)

(their equation (2) in Zhang & Anderson, 2003). Duu
m;i is the adjustment increment for the ith ensemble

member of the mth parameter. cov Dup
m;Dya

k

� �
is the error covariance calculated between the departure

ensembles of the mth parameter prior to the update and the kth updated observable model state in the
observational space. Dyo

k;i and ra
k 2 are the same as in equation (4). EAKF tunes the parameter to minimize

the discrepancy between model states and observations during the estimation period. The tuned parameter
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that minimize the analysis error is assumed to be able to provide better climate simulation and prediction.
It is noted that the estimated parameter value may not necessarily be the optimal because the limitation of
the minimization target, and approximations in the model and the estimation method.

The EAKF approach is suitable for data assimilation and parameter estimation in the CGCM because it is
flow-dependent and easy to be implemented in the CGCM (Anderson, 2001; Zhang & Anderson, 2003). In
addition, EAKF does not require very large ensemble size (Anderson, 2001). Zhang et al. (2007) implemented
EAKF in the GFDL Ensemble Coupled Data Assimilation System (ECDA). Tests on the ECDA with 6-ensemble,
12-ensemble, and 24-ensemble members showed that no further significant improvement was found with
24-member (Chang et al., 2013; Zhang & Rosati, 2010). Therefore, a 12-member ensemble is used in our
study to maintain a small ensemble sampling error (Anderson, 2012; Hamill et al., 2001; Houtekamer &
Mitchell, 1998) at an acceptable cost. The EAKF approach has been used widely in many parameter estima-
tion studies from simple models to sophisticated CGCMs (Li et al., 2016; Liu et al., 2014a, 2014b; Schirber
et al., 2013; Wu et al., 2012, 2013; Zhang, 2011a).

The covariance localization of Gaspari and Cohn (1999) is used with the influence radii of 1,000 km for oce-
anic observations and 500 km for atmospheric observations. In addition, the conditional covariance inflation
(CCI; Aksoy et al., 2006; Tong & Xue, 2005, 2008b) is applied. After each parameter update cycle, the spread
of the parameter ensemble shrinks drastically. Unlike model states that vary with integration, the shrunken
parameter ensemble stays unchanged until the next update cycle. The spread of the parameter ensemble
soon becomes very small. Too much weight is then given to the prior ensemble and future assimilated
observations no longer have any effect. This ensemble spread issue is usually called filter degeneracy. As a
remedy CCI predefines a minimum spread. Whenever the spread of the posterior parameter ensemble
becomes smaller than this minimum spread, the parameter ensemble is inflated to the level of the CCI mini-
mum spread. It should be noted that the choice of the CCI predefined minimum spread is empirical, and its
optimal value varies from parameter to parameter (Aksoy et al., 2006). A smaller CCI spread will lead to a
smoother time evolution of the estimated parameter (Tong & Xue, 2005). However, a smaller CCI spread will
make the estimated parameter take longer time to converge (Tong & Xue, 2005). In our experiment, the CCI
spread is empirically set at 30% of the spread of the initial parameter perturbation for economical reason.

To facilitate parameter estimation, a half year of state-estimation-only (SEO) is conducted (Zhang, 2011a)
before parameter estimation is activated. After that, the combined state and parameter estimation (PE) is
performed. The initial conditions for the integration are taken from a 12-member GFDL CM2.1 ECDA prod-
uct. The initial condition for the ‘‘truth’’ simulation is one ensemble member of the ECDA product at 0000
UTC, 1 January 2000. This initial condition is then integrated with the default convection parameter values
(Table 1) and temporally varying greenhouse gases and natural aerosols (GHGNA) for a few years. This
establishes the ‘‘truth’’ run in the twin experiment. In the ‘‘estimation’’ run, the convection parameter is set
to its biased value, and then perturbed with Gaussian distributed random errors of mean zero and corre-
sponding perturbation spread (as listed in Table 1) into a biased and perturbed parameter ensemble. The
initial conditions for the ensemble in the biased model are taken as the GFDL CM2.1 12-member ECDA
product at 0000 UTC, 1 January 2004. The initial conditions are integrated with the biased parameter
ensemble and GHGNA for a half year to 0000 UTC, 1 July 2004, with SEO. During the SEO, the uncertainty of
the initial condition is largely constrained. After that, two integrations of 1 year up to 0000 UTC, 1 July 2005
are performed. One is SEO with the biased and perturbed parameter ensemble. The other is PE with both
state estimation and parameter estimation activated. The results of the two integrations are compared to
examine the influence of convection parameter estimation.

We evaluate the estimation result in three aspects. The first aspect is the time evolution of the estimated
parameter. In the perfect model regime, the most desirable result is that the estimated parameter reaches
at the ‘‘truth’’ (default) value. This is an anticipation most likely to be achieved in an idealized situation, such
as those in the perfect model regime (Liu et al., 2014a, 2014b; Schirber et al., 2013). It should be noted that
this parameter convergence is a valid target strictly speaking only in the perfect model study here. In more
complex situations, such as multiple parameter estimations under the imperfect model environment, or for
the real world study, parameters may not have true values, and, some parameters may not even converge
(Aksoy et al., 2006; Annan, 2005; Schirber et al., 2013; Tong & Xue, 2008b). The second aspect for evaluating
the result is the error of important model variables during the estimation period. It is desirable that the anal-
ysis error is reduced after convection parameter estimation compared with that of SEO, providing a better
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initial condition for the prediction than that of SEO (Golaz et al., 2013). The third aspect is prediction. It is
desirable that the prediction using the PE initial conditions and convection parameters is more accurate
than that of SEO. The three aspects above are examined to help form an objective evaluation of the param-
eter estimation results.

3. Convection Parameter Sensitivity

We first examine the sensitivity of observable model states with respect to convection parameters. One
important precondition for successful parameter estimation is that the model variables are sensitive to the
change of parameters (Aksoy et al., 2006; Tong & Xue, 2008a, 2008b), called ‘‘parameter sensitivity.’’ When
the sensitivity of a specific parameter is great, the estimation of this parameter is more likely to be success-
ful and, furthermore, the improved parameter is more likely to improve the model state. In addition, a
parameter sensitivity study allows us to identify the regions of observations that are most useful for param-
eter estimation. Observations located in more sensitive regions may provide more information for parame-
ter estimation due to stronger model response.

In this study, the parameter sensitivity is examined using the perturbed parameter method (Zhang, 2011a).
For a single parameter u, we form a 12-member parameter ensemble ui (i 5 1, 2, 3. . .12) by perturbing the
parameter around its default value ud with random noise of i.i.d. N(0, r2). The standard deviation of the per-
turbation r 5 20%ud. The CM2.1 is then integrated freely without observation constraints with the parame-
ter ensemble ui from a same initial condition (the first ensemble member of the GFDL ECDA product) for
6 h which is the observational and updating interval (Liu et al., 2014a). After the integration, the standard
deviations of model states represent the sensitivities of this parameter. The parameter sensitivity experi-
ment is repeated with 24 initial conditions in January, April, July, and October in the year of 2003. The final
result is an average of the 24 results, filtering out the influence of seasonal cycle.

As shown in Figure 2, with the same perturbation, rd, b, and a are relatively more sensitive while Ac and rs

are less sensitive. Horizontally, the most sensitive areas are located in the convective zones in the low lati-
tudes within 308N/S (Figures 2a–2j). The sensitive areas shift and extend toward the summer hemisphere
due to the seasonal change of radiation. In the real world, convection occurs more frequently in the low lati-
tudes, especially in the western tropical Pacific, northern Indian Ocean, and tropical Atlantic regions (Xie &
Arkin, 1997). This distribution is well captured by CM2.1 in its simulation with default convection parameter
values (Delworth et al., 2006). In CM2.1, convection parameters affect model states only when convection
occurs (Moorthi & Suarez, 1992). Therefore, the response of model states to convection parameter uncer-
tainties is the strongest in the low latitudes. This indicates that the relationships between convection
parameters and model states are better established in the low latitudes, and observations of the low lati-
tudes may contribute more signals in estimating the convection parameters.

In the vertical direction, the sensitive areas of most convection parameters are located at the lower tropo-
sphere, except for a (Figure 2m) and rd (Figures 2k and 2p). Parameter a and rd are closely related to proper-
ties of the deep convection which tends to influence the atmospheric state in the upper troposphere.
Therefore, they also display great sensitivities there. Especially for rd, the precipitation efficiency for the
deep convection detraining higher than 500 hPa, the sensitivities of both temperature and moisture display
local maximums around 300 hPa. It is noted that parameter sensitivity may change when the value of this
parameter or other parameters change. Here we examine parameter sensitivities with a uniform perturba-
tion range of 20% of the default parameter value.

4. Results

4.1. Estimation of a Single Convection Parameter
We first discuss the results of single convection parameter estimation in the perfect model regime. In this
experiment, in the assimilation model, one convection parameter is set with the biased value (Table 1, IB1)
while the other four parameters keep their default values. For each parameter, we conduct three integra-
tions: one SEO integration, one PE using global observations to update parameter (PEG), and one PE using
tropical observations within 308N/S to update parameter (PET). The results of SEO and PE are compared to
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investigate the influence of convection parameter estimation. The results of PEG and PET are compared to
further investigate the role of tropical observations in convection parameter estimation.

All estimated parameters converge to the truth values successfully, as shown in Figure 3. A monthly average
is applied to filter out small fluctuations. These fluctuations are caused by constantly tuning parameter with
multiple observations to reduce the distance between model states and observations (Tong & Xue, 2005,
2008b). Although all estimations converge to the truth, the time evolutions of the parameters show some
differences. Parameter rd and b seem to have the best estimation quality, with relatively smoother and
faster convergence within 2 months. The other three parameters show slower convergences and exhibit

Figure 2. Parameter sensitivities. Global distributions of vertically averaged ensemble spreads of 6 h (a–e) atmospheric temperature (unit: K) and (f–j) specific
humidity (unit: g/kg), and the vertical variations of the globally averaged ensemble spreads ((g–o) for the temperature; (p–t) for the specific humidity). The ensem-
ble spread of model state based on a perturbed parameter ensemble serves as a measure of the model’s sensitivity to examined parameter. Each row represents
the results for a single parameter.
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some oscillations. The differences in the time evolutions are likely associated with different parameter sensi-
tivities. For parameters with greater sensitivities, model responses are stronger, so that the ensemble esti-
mated error covariances between the parameters and model states [cov Dup

m;Dya
k

� �
in equation (5)] have

higher signal-to-noise ratios. Therefore, these parameters are more likely to be identified quickly and esti-
mated accurately. The estimation quality is also found to be related with the time scale of the parameter
sensitivity (Liu et al., 2017). Parameters rd and b have greater sensitivities at 6 h time scale than other param-
eters. Therefore, with an updating time scale of 6 h, they have better parameter time evolutions. It should
be noted that the sensitivity of one parameter may change when the value of this parameter or other
parameter changes. In each update, the change of the sensitivity is reflected in the changes of covariance
and variance in equation (5) in the EAKF algorithm. The EAKF automatically uses the real time information
to update parameters. Table 1 summarized the statistical estimation results for each parameter as the
ensemble mean averaged over the last 10 months of the estimation period after the estimation converges
to a stable value (Li et al., 2016; Schirber et al., 2013). The estimation result is assumed to be able to provide
better model simulation and prediction than that of the unestimated parameter. The estimation results are
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Figure 3. Time evolutions of estimated parameters in the single parameter estimation experiments with global (PEG) and
tropical (PET) observations for (a) rd, (b) b, (c) a, (d) Ac, and (e) rs. The black line represents the ‘‘truth.’’ The cyan lines repre-
sent the estimated ensemble members of PEG while the blue line represents their ensemble mean. The pink lines repre-
sent the estimated ensemble members of PET while the red line represents their ensemble mean.

Journal of Advances in Modeling Earth Systems 10.1002/2017MS001222

LI ET AL. 997



very close to the truth with negligible differences. In addition, estimation convergence of PET using only
tropical observations are faster and smoother than PEG using global observations. This is because model
states are more sensitive to parameter changes in the tropical regions. Therefore, in these regions, there are
more chances that convection parameters have direct influences on model states so that the parameter-
state relationship is better defined in these regions (Li et al., 2016; Liu et al., 2014a, 2014b). Moreover, during
parameter estimation, the spread of the parameter ensemble is found to contract significantly after each
update cycle in the tropical regions, suggesting that observations and covariance estimations
[cov Dup

m;Dya
k

� �
in equation (5)] in the tropical regions are more signal-dominant. The single parameter esti-

mation experiment suggests that in general, tropical observations are potentially capable of correcting bias
in the convection parameter through ensemble data assimilation method in a fully coupled GCM.

The optimized parameter after the estimation helps improve the climate analysis. Figure 4 displays the time
evolutions of the root-mean-square-errors (RMSEs) of the atmospheric temperature, specific humidity, and
precipitation for SEO, PEG, and PET. First, the analysis error is significantly reduced after convection parame-
ter estimation. In SEO, although the model states are largely constrained by observations, the biased con-
vection parameter still induces large analysis error. After parameter estimation, the convection parameter is
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Figure 4. Time evolutions of RMSEs of (a–e) atmospheric temperature (unit: K), (f–j) specific humidity (unit: g/kg), and
(k–o) precipitation (unit: mm/d) in single convection parameter estimation experiments. Each row shows the results of one
parameter, as denoted on the left. The black line represents the RMSE for the state-estimation-only (SEO). The blue and the
red line represent the RMSEs of parameter estimation with global observations (PEG) and tropical observations (PET).
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also constrained, therefore the RMSE is further reduced. Second, parameters with greater sensitivities yield
greater reductions of the analysis error. For example, the initial bias for the most sensitive parameter rd is
44% (Table 1) and the RMSE reduced by correcting rd is about 40% for the atmospheric temperature. On
the contrary, the initial bias for the least sensitive parameter rs is 70% while the RMSE reduced by correcting
rs is only 11%. This further demonstrates that estimations of parameters with greater sensitivities are likely
to provide more improvement for model analysis. Third, RMSEs of PET are generally smaller than RMSEs of
PEG, which further suggests the importance of tropical observations in convection parameter estimation.
The above conclusions can also be drawn for wind components in Figure 5. Due to the internal dynamic
adjustment among atmospheric variables, the analysis errors of the horizontal wind and vertical motion are
also reduced after convection parameter estimation, although the reductions are not as significant as for
the temperature and humidity.

An improvement is also found for the ocean state even if the estimated convection parameters are all in
the atmospheric component of the CGCM (Figure 6). For the surface ocean, the RMSEs of SST and SSS (sea
surface salinity) are also reduced after convection parameter estimation, although not as significantly as in
the atmosphere, especially for parameter rs. This is understandable because the surface ocean is dynami-
cally coupled to the atmosphere. The change of the atmospheric temperature, humidity, and precipitation
has strong impacts on the SST and SSS. The influence of convection parameter estimation is transferred
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Figure 5. Same with Figure 4, but for the (a–e) zonal wind component (denoted as u, unit: m/s), (f–j) meridional wind
component (denoted as v, unit: m/s), and (k–o) vertical motion (denoted as x, unit: Pa/s).
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from the atmosphere to the ocean, leading to the improvement of the oceanic analysis indirectly. It is inter-
esting that the sea surface height (SSH) cannot be constrained by atmospheric observations using SEO only.
Without convection parameter estimation, the biased convection parameter seems to keep dragging the
SSH away from the ‘‘truth.’’ However, after parameter estimation eliminating the bias in the convection
parameter, the drift in the SSH is also constrained. Nevertheless, the optimization of convection parameters
does not seem to improve the mixed layer depth (mld), which represents the interaction between the
atmosphere and the ocean. In addition, the advantage of estimation with tropical observations becomes
marginal for oceanic variables. The experiments of single convection parameter estimation under the per-
fect model regime suggest that it is potentially possible to use ensemble data assimilation method to cor-
rect the bias in a convection parameter and improve climate analysis for both the atmosphere and the
ocean in a CGCM. The tropical observation plays an important role in convection parameter estimation. In
addition, it is also noted that the improvement on the mixed layer depth is less obvious, indicating a weaker
relationship between convection parameter estimation and the simulation of mixed layer depth.

4.2. Simultaneous Estimation of Multiple Convection Parameters
Due to the complexity of a CGCM and multiple uncertainty sources (Zhang et al., 2012), it is usually difficult
to attribute model biases to a single parameter. Usually several parameters are tuned simultaneously to
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Figure 6. Same with Figure 4, but for (a–e) SST (unit: K), (f–j) SSS (unit: psu), (k–o) SSH (unit: m), and (p–t) mixed layer
depth (denoted as mld, unit: m).
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obtain an optimal combination of parameter values such that the model state best fits the observation. In
previous studies using the atmospheric models, Aksoy et al. (2006) found that the quality of multiple param-
eter estimation is worse than that of single parameter estimation, because the parameter-state correlation,
which serves as the key in parameter estimation, is significantly reduced by the contamination of other
parameters. Tong and Xue (2008b) conducted a series of simultaneous multiple parameter estimation
experiments and discovered that multiple modes may exist for multiple parameter estimation. Although
results in multiple parameter estimation are not as good as in the single parameter estimation, the quality
of model analysis can be improved significantly. Liu et al. (2014b) performed multiple parameter estimation
in a CGCM, also showing less robust parameter convergence than the case of single parameter estimation.
Annan (2005) estimated multiple parameters simultaneously in an AGCM and discovered that parameters
with greater sensitivities are more likely to be accurately estimated. Here we explore the feasibility of esti-
mating multiple convection parameters simultaneously in the GFDL CM2.1 in the perfect model regime.
Considering the influence of the initial bias distribution, estimation experiments are conducted starting
from two sets of initial parameter guesses, IB1 and IB2, as listed in Table 2.

Multiple parameter estimation still exhibits convergence for some parameters. But, overall, the convergence
is not as good as that of single parameter estimation. Figure 7 shows the time evolutions of the estimated
parameters. Parameter rd converges rapidly from both initial parameter sets IB1 and IB2 in about 2 months,
comparable to the single parameter estimation. Other parameters tend to converge slowly, some taking
almost a year. The estimation accuracy is also degraded in comparison with the single parameter estimation
case. Parameter b approaches the truth also in a few months, but then deviates and finally converges to val-
ues 8% (IB1) and 5% (IB2) lower than the truth in about a year. For parameter a, the estimation converges
to the truth from IB1, overshoots from IB2, and seems to approach a value smaller than the truth. For
parameter Ac, the estimation converges quickly and smoothly to the truth starting from IB1, but converges
much more slowly from IB2. For parameter rs, the estimation exhibits large oscillations around the truth and
do not seem to converge even after 1 year. The ensemble means of estimated convection parameters aver-
aged over the last 3 months (Table 2) show some reduction of parameter biases from the initial guesses.
These average values are used in the forecast experiments that will be discussed later.

The result of multiple parameter estimation is consistent with most previous research using the ensemble
data assimilation method (Aksoy et al., 2006; Annan, 2005; Liu et al., 2014a, 2014b; Tong & Xue, 2008b;
Zhang, 2011b). The overall degeneration of the accuracy of multiple parameter estimation compared with
the single parameter estimation may be contributed partly by a simple statistical reason: given the fixed
sample size, the increased number of parameters tends to increase the uncertainty in the constructed
ensemble covariance matrix between the multiple parameters and climate variables. When calculating the
increment for one parameter using equation (5), model states in the error covariance, state variance, and
observational increment are inevitably contaminated by the influences of other parameters. As a conse-
quence, multiple parameter estimation is not as accurate as single parameter estimation where the single
parameter bias is the only model error source. This is likely most serious if the effect on the climate state
variables are correlated among different parameters. For example, the effect on the climate state may be
compensated between parameters. This compensation effect is clearly seen in our experiment. For IB1, on
the 6 h time scale, a smaller relaxation time scale b (Figure 7b) leads to less convective heating, resulting in
a colder and moister atmosphere (supporting information Figures S1e–S1h). A smaller precipitation effi-
ciency rs for the shallow convection (Figure 7e) reflects more incoming sunlight, also resulting in a colder

Table 2
Results for Simultaneous Estimation of Multiple Convection Parameters

Symbol Truth and range IB1 IB1 result IB2 IB2 result

rd 0.975 (0,1] 0.550 0.984 0.6 0.980
b 0.250 (0,1) 0.100 0.231 0.35 0.237
a 0.025 [0,0.04] 0.055 0.018 0.01 0.023
Ac 1.000 (0,2] 2.000 0.997 0.5 0.872
rs 0.500 (0,1) 0.150 0.291 0.3 0.474

Note. IB2 is the second set of initial parameter biases.
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and moister atmosphere (supporting information Figures S1q–S1t). On the contrary, a smaller entrainment
parameter a (Figure 7c) results in more convective heating and thus a warmer and dryer atmosphere (sup-
porting information Figures S1i–S1l), compensating for the cold and moist bias from b and rs. This compen-
sation effect is also responsible for the existence of multiple modes in multiple parameter estimation (Tong
& Xue, 2008b), especially for convection parameters which usually display multiple peaks in the probability
distribution functions of model state responses (Posselt & Bishop, 2012; Posselt et al., 2014; Posselt & Vuki-
cevic, 2010). Under the influence of multiple modes, the estimated parameters may not all converge to the
truth values. Instead, they may converge to different values which also tend to minimize the cost function.
It should be noted that under this circumstance, the estimation result should be examined carefully in the
model to reduce the risk of triggering other problems that are not considered in the cost function. For
example, Golaz et al. (2013) estimated several cloud parameters in a CGCM. They discovered that while mul-
tiple strategies exist for desired radiation balance and observed climate, these strategies give significantly
different aerosol effects that result in different 20th century temperatures. The findings in the twin experi-
ment framework where the ‘‘truth’’ is precisely known are indicative to convection parameter tuning with

0 2 4 6 8 10 12
0.4

0.8

1.2

1.6

Month

a) r
d

0 2 4 6 8 10 12
0.0

0.1

0.2

0.3

0.4

0.5

Month

b) β

0 2 4 6 8 10 12
0.000

0.015

0.030

0.045

0.060

Month

c) α

Truth
IB1 mean
IB2 mean
IB1 ens
IB2 ens

0 2 4 6 8 10 12
0.0

0.5

1.0

1.5

2.0

2.5

Month

d) A
c

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

Month

e) r
s

Figure 7. Time evolutions of the simultaneous multiple convection parameter estimation with tropical observations for
(a) rd, (b) b, (c) a, (d) Ac, and (e) rs. The black line represents the ‘‘truth.’’ The light and dark green lines represent the esti-
mated ensemble members and their ensemble means from the first initial parameter bias set IB1 (Table 2). The light and
dark purple lines represent the estimated ensemble members and their ensemble means from the second initial parame-
ter bias set IB2 (Table 2). The IB1 mean and IB2 mean overlap the truth in Figure 7a).
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real observations. For simultaneous convection parameter estimation with the ensemble data assimilation
method in a CGCM, parameters with greater sensitivities are more likely to converge to the truth of higher
physical ‘‘reliability’’ with little ‘‘side-effects.’’ Moreover, the final convergence value may depends on the ini-
tial parameter biases.

Although not all estimated parameters converge to the truth, multiple parameter estimation is still able to
substantially reduce the errors in model states during the analysis period. Figure 8 shows the time evolu-
tions of RMSEs for model variables in SEO and PE from IB1. For both the atmosphere and the ocean, the
analysis error is significantly reduced after multiple parameter estimation. The error reduction of mixed layer
depth is less obvious compared with other model variables, as in the case of single parameter estimation.
Results for IB2 are similar with that of IB1 (supporting information Figure S2). Therefore, under the perfect
model regime where all model errors come from the estimated convection parameters, simultaneous
parameter estimation can help reduce the analysis error significantly. Furthermore, this improvement seems
to be independent of the initial parameter biases.

We further explore the impact of multiple parameter estimation on forecast. For initial parameter bias set
IB1, a 1 year forecast is conducted with the estimated parameter values listed in Table 2. The model states
at the end of the 6th month of the parameter estimation are used as forecast initial conditions. The forecast
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Figure 8. Time evolutions of analysis RMSEs for different model variables (unit for us and vs is m/s) in SEO (black), PE (dark
green), and parameter estimation under the imperfect model regime (dark orange) from IB1.
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lead time is 1 year. In this way, the SEO forecast using the initially biased parameters and the SEO initial con-
ditions, and the PE forecast using the estimated parameters and the PE initial conditions are compared to
demonstrate the influence of convection parameter estimation on the short-term climate forecast. Figure 9
shows the time evolutions of forecast RMSEs for model variables in SEO and PE for IB1. RMSEs of the PE
forecast are generally smaller than those of the SEO forecast, indicating that convection parameter estima-
tion helps improve the short-term climate forecast, even though not all the parameters converge perfectly.
Results for IB2 are similar with that of IB1 (supporting information Figure S3). This improvement is caused
mainly for two reasons: the improved model and the improved initial condition. Through parameter estima-
tion, the model bias associated with the convective process is greatly reduced, providing a better CGCM for
the climate forecast. At the same time, the forecast initial condition is improved by incorporating parame-
ters to increase the degree of freedom of tuning.

We have experimented the estimation of convection parameters in a fully coupled CGCM under the perfect
model regime. Our evaluations of the parameter convergence, and the associated analysis error and fore-
cast error show that simultaneous estimation of multiple convection parameters in a CGCM can help reduce
parametric error, improve climate analysis and forecast. A parameter sensitivity study is necessary because
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Figure 9. Time evolutions of forecast RMSEs for SEO (black), PE (dark green), and parameter estimation under the imper-
fect model regime (dark orange) from IB1 (estimating rd while keeping b, a, Ac, and rs biased, see section 3.4 for detailed
description and refer to Figure 13).
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estimations of parameters with greater sensitivities are more likely to have rapid convergences and reliable
results.

4.3. Convection Parameter Estimation Under the Imperfect Model Regime
In this section, an imperfect CGCM is used to explore the effect of convection parameter estimation with the
ensemble data assimilation method in a situation closer to the real world. Due to model discrepancy arises
from our limited understanding of the climate system and approximations in numerical schemes, there are
many biases in a CGCM. Some of the biases are unknown or known but cannot be fixed easily. This kind of
biases are referred to as ‘‘hidden biases’’ in parameter estimation (Li et al., 2016). Here we explore convection
parameter estimation with model discrepancy, i.e., under the imperfect model regime. The hidden convection
biases could in principle be any kind of biases, such as parametric biases and structural errors in the parame-
terization scheme. In this experiment, all five convection parameters are initially biased with IB1 as listed in
Table 1. It is assumed that the bias associated with four parameters b, a, Ac, and rs are unknown or ‘‘hidden.’’
The only known adjustable parameter is the precipitation efficiency rd for the deep convection. So, only rd is
estimated. This simulates the real world case where model discrepancy exists in a CGCM and we tend to tune
the most sensitive parameter to try to ‘‘nudge’’ the model toward the observation. The estimation is evaluated
in terms of the time evolution of the estimated parameter, analysis error, and forecast error.

In this experiment, the estimated rd converges rapidly to 0.999 (ensemble mean averaged over the last 3
months) which is 2.5% greater than the truth (Figure 10). This is because all the hidden biases tend to produce
a colder and moister atmosphere (supporting information Figures S1e–S1t). As a compensation, therefore, the
estimation increases rd to get a greater precipitation efficiency for the deep convection such that it produces
more convective heating (supporting information Figures S1a–S1d). The analysis error is reduced due to the
improved estimation of rd, but not as significantly as in the case of estimating all five convection parameters
(Figure 8). In the forecast, the result is more complex. For most model variables, the forecast errors are smaller
than those of SEO but greater than those of PE. However, for the atmospheric temperature, the forecast error is
even greater than that of SEO. Figure 11 shows the error distributions of the temperature and humidity aver-
aged globally and over the forecast period. Over 400 hPa, a higher estimated precipitation efficiency for deep
convection not only compensates for the cold bias but also overcompensates to cause a warm bias there.

The experimental result under the imperfect model regime reveals
the limitation of applying the current data assimilation method when
model discrepancy is not accounted for. It is possible to tune parame-
ters in the real world to make the model best fit the observation, but
the result could be unpredictable. The estimated parameter may con-
verge to a biased value to compensate for the model discrepancy
(Brynjarsd�ottir & O’Hagan, 2014). The biased estimation may result in
biased physics, giving rise to greater error for some variables in the
forecast. Two ways are potentially useful in mitigating this problem.
One is to modify equation (5) to include an uncertainty term of model
discrepancy. Another is to tune more related parameters, hoping to
include key parameters of model discrepancy. However, neither way
can fully tackle this problem.

However, parameter estimation result can sometimes serve as a diag-
nosis of the potential cause of model discrepancy. For example, it is
possible that the tuned convection parameter(s) display different val-
ues at positive and negative phases of ENSO, indicating that there are
hidden biases in the convection parameterization related to ENSO var-
iabilities. Clearly, many challenges remain in convection parameter
estimation with the ensemble data assimilation method in a CGCM for
the real world application, where model discrepancy could be sub-
stantial. The data assimilation should be improved. It is also critically
important to combine the deep understanding of physical process in
the coupled model with parameter estimation result to achieve a suc-
cessful real world parameter estimation.
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Figure 10. Time evolution of estimated rd under the imperfect model regime.
The black line represents the ‘‘truth.’’ The light and dark orange lines represent
the estimated ensemble members and their ensemble mean from IB1.
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5. Conclusions and Discussions

In this study, we explore convection parameter estimation using an ensemble-based coupled data assimila-
tion method in a fully coupled general circulation model (CGCM). The estimation experiments are per-
formed in a twin experiment setting under both perfect and imperfect model regimes. Five important
convection parameters in the Relaxed Arakawa-Schubert moist convection scheme (RAS) are estimated: the
precipitation efficiencies for the deep and shallow convection (rd and rs), the relaxation time scale b, the
entrainment parameter a, and the ratio of critical cloud work function to its standard value Ac. Under the
perfect model regime, all estimated parameters converge to the truth successfully when estimated individu-
ally. The analysis error is significantly reduced by parameter estimation. When the parameters are estimated
simultaneously, four parameters converge while the least sensitive parameter fails to converge after an
entire year. The convergence of the estimated parameter is closely related to the parameter sensitivity.
Parameters with greater sensitivities are more likely to have fast convergence and reliable estimation
results. After parameter estimation, the initial parameter bias is reduced. The analysis and short-term fore-
cast are both improved. In the imperfect model regime, the estimated parameter converges to a value 2.5%
greater than the truth as a compensation of model discrepancy. The analysis and forecast errors are
reduced. The error reduction comes from two aspects. One is the improved model due to the reduced para-
metric bias. The other is that parameter estimation increases the degree of freedom in the tuning process,
leading to a better initial condition.

Some of our findings provide insights to convection parameter tuning for a CGCM with real observations.
First, a sensitivity study is necessary to help select tunable parameters. Parameters with greater sensitivities
are preferable for tuning purposes because they are more likely to rapidly converge to physically reliable
results. In addition, tuning these highly sensitive parameters leads to more improvement in climate analyses
and predictions than tuning of less sensitive ones, because the highly sensitive parameters have better-
defined relationships with observable model states. Consistent in all our experiments, the estimation of the
most sensitive parameter rd is always the most stable and closest to the truth. The ratio of error reduction to
parameter bias reduction of rd is also the highest among all parameters in the single parameter estimation
experiment.

Second, in the case of multiple parameter estimation, the estimation result must be carefully examined due
to the compensation effect. This reveals a major challenge to parameter estimation. In our imperfect model

Figure 11. Vertical distributions of forecast errors of global mean temperature and specific humidity for SEO (black), PE (dark green), and parameter estimation
under the imperfect model regime (dark orange) from IB1.
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experiment, the value of the only estimated deep convection precipitation efficiency parameter is increased
to compensate for the hidden bias. In the forecast, the estimated parameter overcompensates and causes
too much convective heating in the upper atmosphere. In fact, in the real world, this behavior itself is an
indication that hidden bias exist and other convection parameters may also need to be tuned. Researchers
should be careful in interpreting and applying these results. With model discrepancy, the estimation may
be biased.

Third, tropical observations are important in tuning convection parameters because there are more convec-
tion in the tropical regions and hence better-defined parameter-state relationships in these regions.

Fourth, convection parameter estimation is able to constrain the drift of the ocean in the CGCM. However,
compared to convection parameter estimation in the AGCM, it takes much longer time for convection
parameters to converge in the CGCM where the ocean component is incorporated.

Much further research is needed to explore convection parameter estimation in CGCMs. First, our experiments
can be extended to a much longer time scale to fully explore the influence of convection parameter estima-
tion on the ocean and the entire coupled climatology. With longer time scales, the time evolution of the
parameter sensitivity can reveal the saturated influence of each parameter on the climate system. The satu-
rated time scale of the parameter sensitivity could also provide guidance for choosing the optimal time scale
of the parameter updating interval (Liu et al., 2017). In addition, the estimated convection parameters can be
examined in a longer forecast in terms of important climate variabilities such as ENSO with a period of 2–7
years. In this case, CGCMs with a lower resolution but faster integration speed may be more suitable. In a lon-
ger climate regime, the role of the ocean in estimating convection parameters can be systematically studied.
The major difference between a CGCM and an uncoupled AGCM is whether the role of the ocean is consid-
ered. It is obvious that convection parameters have a great impact on the oceanic simulation (Jang et al.,
2013; Kim et al., 2011), and the ocean in turn influences the frequency, intensity, and location of convection
(Johnson & Xie, 2010; Sabin et al., 2013; Woolnough et al., 2000). Therefore, it is important to include the
ocean component when long-term climate simulation is designed. In our work, the ocean is ‘‘dynamically cou-
pled’’ to the convection through air-sea coupling in the model. It is possible that good statistical relationships
exist in the cross-covariance between convection parameters and oceanic states on a longer time scale.
Recent studies also found that incorporating the air-sea cross-covariance in the coupled data assimilation can
improve the initialization and prediction of ENSO (Zheng & Zhu, 2010), which provides insights in coupled
data assimilation and improving oceanic simulation through convection parameter estimation.

Second, convection parameter estimation in a CGCM using real observations with the ensemble data assim-
ilation method needs to be studied. The estimation method needs to be improved substantially to account
for model discrepancy. And albeit the improvement, it should always be noted that one can never get the
‘‘right’’ parameter value due to model discrepancy. Researchers should be careful in using the estimation
result. In addition, for parameter estimation with real world observations, it is possible that some convection
parameters may have difficulty converging within valid physical ranges (Schirber et al., 2013). Some param-
eters may display periodic features corresponding to different phases of the climate variability, vary stochas-
tically (Hansen & Penland, 2007) or geographically (Wu et al., 2012, 2013). Some of these patterns may
provide useful information and even help discover other model error sources. It is also possible to apply the
estimated time-varying or geographic-varying parameter patterns in climate simulations to help mitigate
some model biases and improve the CGCM.
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Emanuel, K. A., & �Zivković-Rothman, M. (1999). Development and evaluation of a convection scheme for use in climate models. Journal of
the Atmospheric Sciences, 56, 1766–1782.

Evensen, G. (1994). Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error
statistics. Journal of Geophysical Research, 99, 10143–10162.

Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., et al. (2013). Evaluation of climate models. In Stocker, T. F., Qin, D.,
Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., et al. (Eds.), Climate change 2013: The physical science basis. Contribution of working
group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, UK: Cambridge University Press.

Gaspari, G., & Cohn, S. E. (1999). Construction of correlation functions in two and three dimensions. Quarterly Journal of the Royal Meteoro-
logical Society, 125, 723–757.

GFDL Global Atmospheric Model Development Team (2004). The new GFDL global atmosphere and land model AM2-LM2: Evaluation with
prescribed SST simulations. Journal of Climate, 17, 4641–4673.

Gnanadesikan, A., Dixon, K. W., Griffies, S. M., Balaji, V., Barreiro, M., Beesley, J. A., et al. (2006). GFDL’s CM2 global coupled climate models.
Part II: The baseline ocean simulation. Journal of Climate, 19, 675–697.

Golaz, J.-C., Horowitz, L. W., & Levy, H. II (2013). Cloud tuning in a coupled climate model: Impact on 20th century warming. Geophysical
Research Letters, 40, 2246–2251. https://doi.org/10.1002/grl.50232

Golaz, J.-C., Larson, V. E., Hansen, J. A., Schanen, D. P., & Griffin, B. M. (2007). Elucidating model inadequacies in a cloud parameterization by
use of an ensemble-based calibration framework. Monthly Weather Review, 135, 4077–4096.

Gould, J., Roemmich, D., Wijffels, S., Freeland, H., Ignaszewsky, M., Jianping, X., et al. (2004). Argo profiling floats bring new era of in situ
ocean observations. EoS, Transactions of the American Geophysical Union, 85, 185–191.

Griffies, S. M., Gnanadesikan, A., Dixon, K. W., Dunne, J. P., Gerdes, R., Harrison, M. J., et al. (2005). Formulation of an ocean model for global
climate simulations. Ocean Science, 1, 45–79.

Hamill, T. M., Whitaker, J. S., & Snyder, C. (2001). Distance dependent filtering of background error covariance estimates in an ensemble Kal-
man filter. Monthly Weather Review, 129, 2776–2790.

Hansen, J. A., & Penland, C. (2007). On stochastic parameter estimation using data assimilation. Physica D, 230(1–2), 88–98.
Hararuk, O., Xia, J., & Luo, Y. (2014). Evaluation and improvement of a global land model against soil carbon data using a Bayesian Markov

chain Monte Carlo method. Journal of Geophysical Research: Biogeoscience, 119, 403–417. https://doi.org/10.1002/2013JG002535
Held, I. M., & Zhao, M. (2008). Horizontally homogeneous rotating radiative-convective equilibria at GCM resolution. Journal of the Atmo-

spheric Sciences, 65, 2003–2013.
Hourdin, F., Mauritsen, T., Gettelman, A., Golaz, J., Balaji, V., Duan, Q., et al. (2016). The art and science of climate model tuning. Bulletin of

the American Meteorological Society, 98, 1–19.
Houtekamer, P. L., & Mitchell, H. L. (1998). Data assimilation using an ensemble Kalman filter technique. Monthly Weather Review, 126, 796–

811.
Jackson, C. S., Sen, M. K., Huerta, G., Deng, Y., & Bowman, K. P. (2008). Error reduction and convergence in climate prediction. Journal of Cli-

mate, 21, 6698–6709.
Jackson, C. S., Sen, M. K., & Stoffa, P. L. (2004). An efficient stochastic Bayesian approach to optimal parameter and uncertainty estimation

for climate model predictions. Journal of Climate, 17, 2828–2841.
J€arvinen, H., R€ais€anen, P., Laine, M., Tamminen, J., Ilin, A., Oja, E., et al. (2010). Estimation of ECHAM5 climate model closure parameters

with adaptive MCMC. Atmospheric Chemistry and Physics, 10, 9993–10002.
Jang, Y.-S., Kim, D., Kim, Y.-H., Kim, D.-H., Watanabe, M., Jin, F.-F., et al. (2013). Simulation of two types of El Ni~no from different convective

parameters. Asia-Pacific Journal of the Atmospheric Sciences, 49, 193–199.
Johnson, N. C., & Xie, S.-P. (2010). Changes in the sea surface temperature threshold for tropical convection. Nature Geoscience, 3, 842–845.
Kang, S. M., Held, I. M., Frierson, D. M. W., & Zhao, M. (2008). The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean

experiments with a GCM. Journal of Climate, 21, 3521–3532.
Kennedy, M., & O’Hagan, A. (2001). Bayesian calibration of computer models. Journal of the Royal Statistical Society, 63, 425–464.
Kim, D., Jang, Y.-S., Kim, D.-H., Kim, Y.-H., Watanabe, M., Jin, F. F., et al. (2011). El Ni~no-Southern Oscillation sensitivity to cumulus entrain-

ment in a coupled general circulation model. Journal of Geophysical Research, 116, D22112, 1–9. https://doi.org/10.1029/2011JD016526
Klocke, D., Pincus, R., & Quaas, J. (2012). On constraining estimates of climate sensitivity with present-day observations through model

weighting. Journal of Climate, 24, 6092–6099.
Lee, M.-I., Schubert, S. D., Suarez, M. J., Schemm, J.-K. E., Pan, H.-L., Han, J., & Yoo, S.-H. (2008). Role of convection triggers in the simulation

of the diurnal cycle of precipitation over the United States Great Plains in a general circulation model. Journal of Geophysical Research,
113, D02111, 1–10. https://doi.org/10.1029/2007JD008984

Li, S., Zhang, S., Liu, Z., Yang, X., Rosati, A., Golaz, J.-C., et al. (2016). The role of large-scale feedbacks in cumulus convection parameter esti-
mation. Journal of Climate, 29, 4099–4119.

Liang, F., Cheng, Y., & Lin, G. (2013). Simulated stochastic approximation annealing for global optimization with a square-root cooling
schedule. Journal of the American Statistical Association, 109, 847–863.

Lin, S.-J. (2004). A ‘‘vertically Lagrangian’’ finite-volume dynamical core for global models. Monthly Weather Review, 132, 2293–2307.
Liu, C., Zhang, S., Li, S., & Liu, Z. (2017). Impact of the time scale of model sensitivity response on coupled model parameter estimation.

Advances in Atmospheric Sciences, 34, 1346–1357.
Liu, Y., Liu, Z., Zhang, S., Jacob, R., Lu, F., Rong, X., et al. (2014b). Ensemble-based parameter estimation in a coupled general circulation

model. Journal of Climate, 27, 1751–7162.
Liu, Y., Liu, Z., Zhang, S., Rong, X., Jacob, R., Wu, S., et al. (2014a). Ensemble-based parameter estimation in a coupled GCM using the adap-

tive spatial average method. Journal of Climate, 27, 4002–4014.
Lord, S. (1982). Interaction of a cumulus cloud ensemble with the large-scale environment. Part III: Semi-prognostic test of the Arakawa-

Schubert cumulus parameterization. Journal of the Atmospheric Sciences, 39, 88–103.
Mauritsen, T., Stevens, B., Roeckner, E., Crueger, T., Esch, M., Giorgetta, M., et al. (2012). Tuning the climate of a global model. Journal of

Advances in Modeling Earth Systems, 4, 156–169.

Journal of Advances in Modeling Earth Systems 10.1002/2017MS001222

LI ET AL. 1008

https://doi.org/10.1002/grl.50232
https://doi.org/10.1002/2013JG002535
https://doi.org/10.1029/2011JD016526
https://doi.org/10.1029/2007JD008984


Moorthi, S. A., & Suarez, M. J. (1992). Relaxed Arakawa-Schubert: A parameterization of moist convection for general circulation models.
Monthly Weather Review, 120, 978–1002.

Mukhopadhyay, P., Taraphdar, S., Goswami, B. N., & Krishnakumar, K. (2010). Indian summer monsoon precipitation climatology in a high-
resolution regional climate model: Impacts of convective parameterization on systematic biases. Weather and Forecasting, 25, 369–387.

Murphy, J. M., Sexton, D. M. H., Barnett, D. N., Jones, G. S., Webb, M. J., Collins, M., et al. (2004). Quantification of modelling uncertainties in
a large ensemble of climate change simulations. Nature, 430, 768–772.

Neelin, J. D., Bracco, A., Luo, H., McWilliams, J. C., & Meyerson, J. E. (2010). Considerations for parameter optimization and sensitivity in cli-
mate models. Proceedings of the National Academy of Sciences of the United States of America, 107, 21349–21354.

Nishii, K., Miyasaka, T., Nakamura, H., Kosaka, Y., Yokoi, S., Takayabu, Y. N., et al. (2012). Relationship of the reproducibility of multiple varia-
bles among Global Climate Models. Journal of the Meteorological Society of Japan, 90A, 87–100.

Posselt, D. J., & Bishop, C. H. (2012). Nonlinear parameter estimation: Comparison of an ensemble Kalman smoother with a Markov chain
Monte Carlo algorithm. Monthly Weather Review, 140, 1957–1974.

Posselt, D. J., Hodyss, D., & Bishop, C. H. (2014). Errors in ensemble Kalman smoother estimates of cloud microphysical parameters. Monthly
Weather Review, 142, 1631–1654.

Posselt, D. J., & Vukicevic, T. (2010). Robust characterization of model physics uncertainty for simulations of deep moist convection. Monthly
Weather Review, 138, 1513–1535.

Randall, D. A., Xu, K. M., Somerville, R. J. C., & Iacobellis, S. (1996). Single-column models and cloud ensemble models as links between
observations and climate Models. Journal of Climate, 9, 1683–1697.

Rougier, J. C. (2007). Probabilistic inference for future climate using an ensemble of climate model evaluations. Climatic Change, 81, 247–264.
Ruiz, J. J., Pulido, M., & Miyoshi, T. (2013). Estimating model parameters with ensemble-based data assimilation: A review. Journal of the

Meteorological Society of Japan, 91, 453–469.
Sabin, T. P., Babu, C. A., & Joseph, P. V. (2013). SST-convection relation over tropical oceans. International Journal of Climatology, 33, 1424–

1435.
Schirber, S., Klocke, D., Pincus, R., Quaas, J., & Anderson, J. L. (2013). Parameter estimation using data assimilation in an atmospheric general

circulation model: From a perfect toward the real world. Journal of Advances in Modeling Earth Systems, 5, 58–70.
Severijns, C. A., & Hazeleger, W. (2005). Optimizing parameters in an atmospheric general circulation model. Journal of Climate, 18, 3527–

3535.
Sexton, D. M. H., Murphy, J. M., Collins, M., & Webb, M. J. (2012). Multivariate probabilistic projections using imperfect climate models part

I: Outline of methodology. Climate Dynamics, 38, 2513–2542.
Smagorinsky, J. (1963). General circulation experiments with the primitive equations. Monthly Weather Review, 91, 99–164.
Sobel, A. H., Maloney, E. D., Bellon, G., & Frierson, D. M. (2010). Surface fluxes and tropical intraseasonal variability: A reassessment. Journal

of Advances in Modeling Earth Systems, 2, 1–27.
Stainforth, D. A., Aina, T., Christensen, C., Collins, M., Faull, N., Frame, D. J., et al. (2005). Uncertainty in predictions of the climate response

to rising levels of greenhouse gases. Nature, 433, 403–406.
Stouffer, R. J., Broccoli, A. J., Delworth, T. L., Dixon, K. W., Gudgel, R., Held, I., et al. (2006). GFDL’s CM2 global coupled climate models. Part

IV: Idealized climate response. Journal of Climate, 19, 723–740.
Sud, Y., Chao, W. C., & Walker, G. K. (1991). Contributions to the implementation of the Arakawa-Schubert cumulus parameterization in the

GLA GCM. Atmospheric Sciences, 48, 1573–1586.
Tippett, M. K., Anderson, J. L., Bishop, C. H., Hamill, T. M., & Whitaker, J. S. (2003). Ensemble square root filters. Monthly Weather Review, 131,

1485–1490.
Tokioka, T., Yamazaki, K., Kitoh, A., & Ose, T. (1988). The equatorial 30–60 day oscillation and the Arakawa-Schubert penetrative cumulus

parameterization. Journal of the Meteorological Society of Japan, 66, 883–901.
Tong, M., & Xue, M. (2005). Simultaneous retrieval of microphysical parameters and atmospheric state variables with radar data and ensem-

ble Kalman filter method. Extended Abstracts P1.30 presented at 17th conference on numerical weather prediction. Washington, DC, Amer-
ican Meteor Society. Retrieved from http://ams.confex.com/ams/pdfpapers/95042.pdf

Tong, M., & Xue, M. (2008a). Simultaneous estimation of microphysical parameters and atmospheric state with simulated radar data and
ensemble square root Kalman filter. Part I: Sensitivity analysis and parameter identifiability. Monthly Weather Review, 136, 1630–1648.

Tong, M., & Xue, M. (2008b). Simultaneous estimation of microphysical parameters and atmospheric state with simulated radar data and
ensemble square root Kalman filter. Part II: Parameter estimation experiments. Monthly Weather Review, 136, 1649–1668.

Van Lier-Walqui, M., Vukicevic, T., & Posselt, D. J. (2012). Quantification of cloud microphysical parameterization uncertainty using radar
reflectivity. Monthly Weather Review, 140, 3442–3466.

Van Lier-Walqui, M., Vukicevic, T., & Posselt, D. J. (2014). Linearization of microphysical parameterization uncertainty using multiplicative
process perturbation parameters. Monthly Weather Review, 142, 401–413.

Williamson, D., Blaker, A. T., Hampton, C., & Salter, J. (2015). Identifying and removing structural biases in climate models with history
matching. Climate Dynamics, 45, 1299–1324.

Williamson, D. B., Blaker, A. T., & Sinha, B. (2017). Tuning without over-tuning: Parametric uncertainty quantification for the NEMO ocean
model. Geoscientific Model Development, 10, 1–41.

Winton, M. (2000). A reformulated three-layer sea ice model. Journal of Atmospheric and Oceanic Technology, 17, 525–531.
Whitaker, J. S., & Hamill, T. M. (2002). Ensemble data assimilation without perturbed observations. Monthly Weather Review, 130, 1913–1924.
Wittenberg, A. T., Rosati, A., Lau, N.-C., & Ploshay, J. J. (2006). GFDL’s CM2 global coupled climate models. Part III: Tropical Pacific climate

and ENSO. Journal of Climate, 19, 698–722.
Woolnough, S. J., Slingo, J. M., & Hoskins, B. J. (2000). The relationship between convection and sea surface temperature on intraseasonal

timescales. Journal of Climate, 13, 2086–2104.
Wu, X., Zhang, S., Liu, Z., Rosati, A., & Delworth, T. L. (2013). A study of impact of the geographic dependence of observing system on

parameter estimation with an intermediate coupled model. Climate Dynamics, 40, 1789–1798.
Wu, X., Zhang, S., Liu, Z., Rosati, A., Delworth, T. L., & Liu, Y. (2012). Impact of geographic dependent parameter optimization on climate esti-

mation and prediction: Simulation with an intermediate coupled model. Monthly Weather Review, 140, 3956–3971.
Xie, P., & Arkin, P. A. (1997). Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numeri-

cal model outputs. Bulletin of the American Meteorological Society, 78, 2539–2558.
Yang, B., Qian, Y., Lin, G., Leung, L. R., Rasch, P. J., Zhang, G. J., et al. (2013). Uncertainty quantification and parameter tuning in the CAM5

Zhang-McFarlane convection scheme and impact of improved convection on the global circulation and climate. Journal of Geophysical
Research: Atmosphere, 118, 395–415. https://doi.org/10.1029/2012JD018213

Journal of Advances in Modeling Earth Systems 10.1002/2017MS001222

LI ET AL. 1009

http://ams.confex.com/ams/pdfpapers/95042.pdf
https://doi.org/10.1029/2012JD018213


Zhang, S. (2011a). Impact of observation-optimized model parameters on decadal predictions: Simulation with a simple pycnocline predic-
tion model. Geophysical Research Letters, 38, L02702. https://doi.org/10.1029/2010GL046133

Zhang, S. (2011b). A study of impacts of coupled model initial shocks and state-parameter optimization on climate predictions using a sim-
ple pycnocline prediction model. Journal of Climate, 24, 6210–6226.

Zhang, S., & Anderson, J. L. (2003). Impact of spatially and temporally varying estimates of error covariance on assimilation in a simple
atmospheric model. Tellus Series A-Dynamic Meteorology & Oceanography, 55, 126–147.

Zhang, S., Harrison, M. J., Rosati, A., & Wittenberg, A. T. (2007). System design and evaluation of coupled ensemble data assimilation for
global oceanic climate studies. Monthly Weather Review, 135, 3541–3564.

Zhang, S., Liu, Z., Rosati, A., & Delworth, T. (2012). A study of enhancive parameter correction with coupled data assimilation for climate
estimation and prediction using a simple coupled model. Tellus Series A-Dynamic Meteorology & Oceanography, 64, 53–66.

Zhang, S., & Rosati, A. (2010). An inflated ensemble filter for ocean data assimilation with a biased coupled GCM. Monthly Weather Review,
138, 3905–3931.

Zhang, T., Li, L., Lin, Y., Xue, W., Xie, F., Xu, H., et al. (2015). An automatic and effective parameter optimization method for model tuning.
Geoscientific Model Development, 8, 3579–3591.

Zheng, F., & Zhu, J. (2010). Coupled assimilation for an intermediated coupled ENSO prediction model. Ocean Dynamics, 60, 1061–1073.
Zou, L., Qian, Y., Zhou, T., & Yang, B. (2014). Parameter tuning and calibration of RegCM3 with MIT-Emanuel cumulus parameterization

scheme over CORDEX East Asia domain. Journal of Climate, 27, 7687–7701.

Journal of Advances in Modeling Earth Systems 10.1002/2017MS001222

LI ET AL. 1010


	l
	l
	l

